
Extrapolation and interpolation methods using ionic equilibrium constants 

  
1. Concentration dependence of ionic activity coefficients in aqueous solutions 
Debye-Huckel is the simplest model to describe the concentration dependence of activity coefficients in 

the aqueous electrolyte solutions. 

According to the Debye-Huckel equation, the activity coefficient of a dissociated electrolyte is given by [63 

ROB/STO]: 
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The upper adequate limit of this equation is ≈10-2 М. 

Solution ionic strength Im is:  
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where mi = molality. It should be noted that the molarity ionic strength is more often used: 
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In very dilute solutions (Im~10-3 M) the Debye-Huckel equation may be replaced with the Debye-Huckel 

limiting law: 

mIZZA −+± −=γlg . 
In later work Huckel took into account  cation - anion interactionsto give the extended Debye-Huckel 

equation. This is adequate up to 0.7-0.8 M 
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The Guntelberg equation has a similar form and is adequate up to 0.1 M [26 GUN]  
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The Scatchard equation is similar and is adequate up to 0.2 M [61 SCA], [70 SCA/RUS], [76 SCA] 
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The Guggenheim equation is adequate up to 0.5 M. [35GUG], [55GUG/TUR] 
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Quasi-lattice model of ionic solutions [79 PYT] is the alternative of the limit Debye-Huckel law for the 

diluted aqueous electrolyte solutions (Im~10-2 M). In this model the electrolyte activity coefficient is 
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where β- empirical constant, individual for each electrolyte [71 BOK/CON], [63 ROB/STO].  

The equation [78 CRU/REN], [95 CHE/CHO] 
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is used for the wider concentration range. 

The Robinson - Stokes model is a further development of Debye-Huckel ionic solution model [63 

ROB/STO]. It takes into account the hydration of ν moles of electrolyte by h moles of solvent 
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where αW = water activity, Mw = water molar mass, m = molality.  

This equation satisfactorily describes the concentration dependence of electrolyte activity coefficient for 1-

1-electrolyte up to  4 - 5 M, and for 2-1-electrolyte up to  1.5-1.8 M [85 RAB]. 

An empirical equation to describe the concentration dependence of the activity coefficient of a 1-1-

electrolyte over a wide concentration range at 298 K was proposed by Solovkin [61 SOL], [69 SOL]: 
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where «+» and «-» correspond to cation and anion; С = molarity; α± = " effective radius " of hydrated ion. 

The Davies equation [62 DAV] is often used for describe the concentration dependence of activity 

coefficients 
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It should be noted that in early works a less suitable value of 0.2 was used instead 0.3 value. 

 

The SIT (Specific Interaction Theory) equation of the generalized inter-ion interaction Bronsted - 

Guggenheim - Scatchard theory [80 CIA], [90 CIA], [97 GRE/PLY] is often used for the description of the 

concentration dependence of the ionic activity coefficients in wide concentration range: for 1-1-elecrtolyte 

up to 4-4.5 M and for 2-1, 1-2 - electrolytes up to 2-2.5 M. For example, the activity coefficient of M cation 

in MX electrolyte solution may be calculated as: 
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The Vasil’ev equation is similar[62 VAS], [82 VAS] : 
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Helgeson [81 HEL/KIR] has proposed a semi-empirical method to describe the concentration dependence 

of activity coefficients, taking ionic hydration, temperature and pressure variations into account: 
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where  

– lg[1+0.0180153m] is term of mole fraction – molality conversion;  

bo
MX , b1

MX are inter-ion interaction parameters. 
Bromley [73 BRO] has proposed a general equation to calculate activity coefficients in aqueous solutions 

over a wide concentration range  up to 6-8 molality 
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where ρ is an empirical constant, individual for each electrolyte type, α = “effective ionic radius”, В, С are 

parameters,  individual for each electrolyte, В0 , n  are characteristic constants. 

For practical purposes Bromley [73 BRO] simplified this equation to: 
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Later it was found, that the В values for individual electrolytes can be approximated to a simple function 

from values of individual ions 

anioncationanioncation BBB δδ++= . 
Taking ionic association in high concentration ranges into account, the Bromley equation (for symmetric 

1-1 and 2-2-electrolytes) becomes [73 BRO]: 
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Zemaitis [86 ZEM/CLA] modified the Bromley equation  to : 
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where B, C, D are temperature - dependent parameters, individual for each electrolyte 

2
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2
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Т = temperature 0C. 

Madariaga et al. [94 CAS/ETX], [96 BOR/CAS] modified the Bromley equation to : 
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Virial expansions of ionic strength effects (on the basis of the extended Debye-Huckel model) are often 

used to describe the concentration dependence of activity coefficients in aqueous solutions  [57 MAC], 

[76 SCA]  
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The Li - Page [98 LI/PAG] equation describes the concentration dependence of activity coefficient in 

electrolyte aqueous solution, taking into account solvation effects 
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where n = the particle number,  

Icr  = the critical value of the ionic strength, at which the natural logarithm of electrolyte activity coefficient 

begins to increase;  

α is an empirical parameter. 

Hamer and Wu proposed a type of virial equation to calculate activity coefficients[72 HAM/WU] 
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where  A=0.5108; B, β, C, D are parameters, individual for each electrolyte. 



Pan [81 PAN] has offered the simple modification of Robinson - Stokes equation [48 STO/ROB] (for 

univalent electrolytes) 

 
where α =1,17444; α* is an individual electrolyte parameter; h is the hydration number. 

Chen [82 CHE/BRI] proposed the following equation to calculate the activity coefficient for univalent 

electrolytes on a mole fraction basis 
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Here Aφ = 0,392; ρ = 14,9; a = 0,2; xa, xc, x1 = mole fractions of anion, cation and water. 

Meisner and Kusik [78 KUS/MEI] proposed the following equation to calculate activity coefficients: 

 
where 

 

 

 
 and Aγ = 0.5107; q is a parameter, individual for each electrolyte. 

Bahe [72 BAH] proposed equation to calculate activity coefficients in molarity units: 
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where  A = 0.28894; B is a parameter, individual for each electrolyte. 

More recently, the following equation has been proposed [96 KHO/VER], [99 TAG/MOD]: 
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 This describes the activity coefficients for 1-, 2-, 3-charged ions in the mole fraction scale with 

reasonable precision. 



 

Kuznetsova has proposed and original equation, based on a quasi-crystalline model of electrolyte 

solutions [82 KUZ], [93 KUZ] 
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α = ion polarizability,  

ν = the number of ions in the electrolyte formula,  

q is the generalized electrolyte charge,  

do = distance between the ions in the electrolyte quasi-crystalline lattice. 

The Pitzer equations [73 PIT], [91 PIT] are widely used to describe the concentration dependence of 

activity coefficient. For example, for MX, the activity coefficient is expressed as [73 PIT/MAY]: 
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where νM and νX = the number of М and  Х ions in the electrolyte formula МνM ХνX ,  

ZM, ZX = the ion charge, m = molality,  

ХМ ννν += .  

For aqueous solutions at 250 С and 105 pascals, the following equations may be used 
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where 
γf = Debye-Huckel term, which is extended by addition the osmotic effects;  

parameters 
)0(

МХβ  and 
)1(

МХβ  characterize the second virial coefficient (they correspond to the ε – 

coefficient in  SIT equation); 
φ
МХС  determines the third virial coefficient.  

Ionic strength in Pitzer equations is calculated in molality units. The Pitzer equation is easily extended for 

electrolyte mixture, however, at the present time, Pitzer parameters are known for only a few binary 

electrolytes. 

The Pitzer equation to calculate the activity coefficients for СхАу in an electrolyte mixture is [91 PIT] 
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and functions   are    

 

where 2, == αα mIx  . 
Edwards has simplified these equations, taking binary inter-ion interactions only into account. [78 

EDW/MAU] 
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Аф = Debye-Huckel parameter; β i = Pitzer parameter of binary interactions.  



 

Milero has proposed a simplified Pitzer-type equation [82 MIL/SCR], [92 MIL]: 
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Setchenow has proposed the following equation to calculate the concentration dependence of activity 

coefficient of neutral particles [89 SET]: 
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where 

S0 = solubility in the pure water;  

SS = solubility in the electrolyte solution;  

k = desalt coefficient, so-called Setchenow coefficient; 

ms = electrolyte concentration. 

The applicability of the Setchenow equation is limited, as the k-coefficient is assumed to be temperature - 

independent. 

For concentrated solutions Cramer has added a second virial coefficient to the Setchenow equation [80 

CRA]: 
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Pitzer has proposed a more precise equation which takes temperature effects and the influence of 

electrolyte background into account [74 PIT], [75 PIT], [77 PIT], [78 PIT] 
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where  
β0(m-m) = temperature - dependent parameter, which reflects the intermolecular interactions; 

β0(m-S) = temperature - dependent parameter, which reflects the ion –molecular interactions;  

mS = concentration of neutral particles. 

In an electrolyte mixture, containing ncat cations and nan anions, the equation to calculate the activity 

coefficient of a neutral particle N  is  [91 PIT]: 
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where λ, ξ are Pitzer coefficients. 
 
 
2. Equations used to recalcule equilibrium constants to a standard state 
 
Most often the following equations are used to express the dependence of conditional equilibrium 

constant or concentration equilibrium constant on ionic strength [62 VAS], [82 VAS] 
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These equations follow from the Debye-Huckel theory. 

The Guggenheim equation is similar [55 GUG/TUR]: 
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where  с is a variable parameter;  

εi  is a characteristic parameter of complex formation reaction. 

A simplified form of this equation has been proposed [90 WOO], [00 GAM/WOO], [98 DEB/CAS] 
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The following equation has been proposed to calculate the protonation constants for mono- and amino-

acids in the concentration range m < 2 of an electrolyte MX on the basis of Guggenheim method [93 

BRA/ARC ], [00 BAR/BRA] 
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In the Scathard model, the dependence of a concentration the constant on ionic strength is described by 

the following equation [61SCA], in which the ionic strength effect is expanded to a higher degree: 
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where   

αJ = variable parameter, which is often accepted by default αJ = 1.5; 

Рi , Qi are empirical parameters for given complex formation reaction. 



For a wide concentration range of background electrolyte it is preferable to use the following equation, 

which is extended by virial Debye-Huckel terms [96 PEZ/MOL] 
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The modified forms of this equation were used in [97 LI/BYR], [00 KLU/BYR], [91 KIS/SOV] 
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For a long time it was believed that equilibrium constants up to 0.5-0.6 M of ionic strength could be 

calculated by either the Davies equation [62 DAV]  
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or the equation [82 VAS] 
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Vasil’ev has proposed an equation with one empirical parameter for the calculation the dissociation 

(stability) constants in aqueous solutions [62 VAS] 
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Later this was modified to [82 VAS] 
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Recently it has been used to study the dependence of stability constant in aqueous solutions on ionic 

strength on the basis of the extended Debye-Huckel equation [97 DAN/DES]: 
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КТ = thermodynamic stability constant (ionization constant) at infinite dilution;  

C,D,E are empirical parameters. At I<1 M the EI2 term is neglected.  
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Later an alternative equation was proposed to perform calculations in solutions with moderately 

concentrated background concentrations of electrolytes, including and mixtures (e.g. synthetic sea water 

and mineralized water) [99 DES/GIA] 
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In the SIT theory the following equation may be used to extrapole and interpole ionic equilibrium 

constants. For example, for complex formation reaction: 
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The quasi-lattice model for  the dependence of  stability constant  on ionic strength may be reduced to  

the following expression [97 VIL/FIO], [97 VIC] 
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In the low concentration range up to 0.5 M It is possible to use the following equation to describe the 

concentration dependence of stability constants of mono-ligand complexes [80 SUN/HAR]  
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Baes and Mesmer [76 BAE/MES] modified the Guggenheim equation by including the BMX parameter as 
a function of ionic strength. It gives the following expression for concentration dependence of stability 
constant: 
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The B0
MX and B∞

MX parameters are estimated from the concentration dependence of activity coefficients. 

 

An advanced model of the modified Bromley [99 RAP/SAN], [99 BEL/OLA] methodology gives the 

following expression for concentration dependence of stability constant for reaction 
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where  

Fi – cross-interaction coefficients with the ions of background XY electrolyte, for example, for metal ion 
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Application of the Pitzer theory for the extrapolation and interpolation of ionic equilibrium constants may 

be reduced to the multi-parametrical virial equation [91PIT]: 
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On the basis of the Pitzer theory Bugaevsky [87 BUG/HOL] proposed the following equation: 
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To calcule the protonation constants for mono- and aminoacids in the concentration range m < 2 (МХ 

electrolyte ) the following equation has been proposed [93 BRA/ARC], [00 BAR/BRA], on the basis of the 

Pitzer method: 
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A simplified version of the Pitzer equation has been proposed to describe the concentration dependence 
of protonation constants of carboxylic acids [97 FOT/GIA], [98 FOT/SAM]  
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Partanen has modified the Pitzer equation to describe the concentration dependence of protonation 

constants for carboxylic acids [00 PAR/JUU], [00 PAR] 
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where Bi, bi parameters are depending on ion kinds and background electrolyte;  

m0 standard ionic strength. 

  



For practical purposes, Millero has proposed the simplified Pitzer type equation [82 MIL/SCH], [92 MIL]  
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The following method wasproposed to recalculate the protonation constants for the aqua - organic 

electrolyte solutions [90 LED/SHA] 
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where  А* и b are empirical parameters. 

 

A virial expansion has been used to describe the dependence of dissociation constants for 

polyelectrolytes on ionic strength [99 DAN/DES] 
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